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Powerlang is a research vehicle to explore the implementation of programming laguages. While focused on Smalltalk,
it aims to be a generic language creation toolkit, something you can use to either evolve Smalltalk, or either build a
new language implementation of choice. We provide tools for coding, bootstrapping, compiling, jitting and debugging
the implementation.

Bee Smalltalk serves as a reference implementation using the framework. We are implementing an evolution of the
classic Smalltalk-80. Something adapted to the new kinds of systems that are common these days: from embedded to
servers, with or without a gui, supporting remote development from scratch.
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CHAPTER 1

Design

Below is our humble vision of what a modern Smalltalk design should look like, the direction in which we want to go.

We want a minimal modular Smalltalk, that starts from a little kernel and that can load other modules on-the-fly to
grow exactly as needed. The bootstrap process is done mostly from a specification (source code), using different
dialects (Pharo et al). This allows sealed-system development which is required when doing big or complex changes,
specially in design. Of course, the live environment development will be supported as usual in Smalltalk-80 systems.
Computation is represented using Smalltalk Expressions (or SExpressions), a lower-level representation of abstract
syntax trees (ASTs) that is encoded into byte arrays (called astcodes).

Namespaces are supported from the beginning, and form the base of packages. Packages are built into (binary) image
segments that load very quickly. A package distribution system computes dependencies and fetches prebuilt image
segments for quick setup, update and deployment.

The base system can be used to allow creation of different dynamic languages. In particular, we expect Bee Smalltalk
to expand on two different axes: on one hand, it can grow to become a full, tightly integrated Smalltalk; on the other
hand, its kernel can be the base system on top of which we support other Smalltalks (or other languages). The main
candidate for the latter approach is to make the opensmalltalk-vm run on top of Bee kernel, instead of translating it to
C and compiling. This would make Squeak/Pharo/Cuis run on top of Bee, which could either run self-hosted (if using
the DMR) or on top of another VM (like the OMR). Below we present a look of different possible mixes and matches
of language environments and hosting runtimes.
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CHAPTER 2

Implementation

Powerlang-based systems should work on Windows, Linux, Mac, Android and nopsys, including embedded platforms.
64 and 32 bit architectures are the starting point, but if possible we may try even smaller.

At least two runtimes are being developed in parallel. The pure DMR (dynamic metacircular runtime), and the Eclipse
OMR. The DMR is an AOT-based approach, that uses Smalltalk to pre-nativize a Smalltalk JIT compiler, and then
uses that compiler to nativize on the fly other Smalltalk code. The OMR is a state-of-the-art C++ runtime engine, that
includes plugabble interpreters, JIT-compilers and garbage collectors, which can be used to support languages like
Smalltalk.

Smalltalk source code is stored on git, using a tonel-like format. We store just code and definitions in the repo, no
artifacts. Build artifacts go through Continuous Integration from the very beginning. Each OS platform is put in a
separate namespace and built into separate image segments, which are autoloaded according at startup according to
the running platform. The system can be debugged remotely through a vdb/gdb connection, which allows both local
and remote debugging.
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CHAPTER 3

Setup

To setup the development repository, see the instructions in Powerlang repo.
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CHAPTER 4

How to improve this documentation

This documentation was written in rst format and html output was generated by sphinx. You will find these same
contents in /docs directory. To be able to compile them, you will need to install sphinx in your system:

pip3 install sphinx sphinx-autobuild

then just from root powerlang dir do:

sphinx-autobuild docs docs/_build/html

which will open a local http server at http://127.0.0.1:8000 that recompiles automatically when files are changed
and that lets you browser the docs as you change them. When you have any change, just open a PR in
github.com/powerlang
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CHAPTER 5

Indices and tables

5.1 Bootstrap

Powerlang is the base system used to generate Smalltalk images from Smalltalk source code written in files. We expect
it to let generate images for other languages in the future.

For now, Powerlang runs on top of Pharo, and consists of a set of packages that allow for loading code definitions, to
compile them, build image segments, and to generate native code for methods ahead of time, which is required when
targetting the DMR runtime.

Code is loaded into a Ring2 environment, which is as a set of objects that specify what is included in a module.
Currently, the main supported code-base is that of Bee Smalltalk. Powerlang has been developed hand-in-hand with
Bee, with the hope that in the future other systems are also supported. The Bee code is in a separate git repository,
which the makefiles automatically clone into bootstrap/specs/bee-dmr.

Bee consists of a main Kernel module, which is self-hosted. This means that the kernel is able to perform basic
Smalltalk computation without accessing nor requiring other modules. The Kernel includes objects like numbers,
collections, classes, methods and modules. If other things are to be used, they are loaded in a modular fashion: OS
support, JIT compiler, libraries are out by default but a dependency tracking system allows will allow to easily add
stuff.

5.1.1 Bootstrap steps

Generating an executable image segment requires a series of steps, which we describe next. You can also study these
steps by looking at Powerlang-Building packages. The process is the following:

1. Kernel Genesis

VirtualSmalltalkImage fromSpec wordSize: n; genesis instantiates a virtual image that reads
Bee Kernel module definition, and then builds the objects required for the classes, metaclasses and behaviors. Objects
generated during the genesis are of type ObjectMap. This hierarchy of types allows to represent the contents of the
newly created object slots, and their corresponding spec type and associated behavior and hash. The objects created
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by this virtual image are the minimum needed to do any kind of Smalltalk execution. However, it doesn’t contain any
method, as compiling methods is a more complex step that requires bootstrap initialization of globals, class vars and
pool vars. It doesn’t even contain the Smalltalk object, which is generated later.

2. Bootstrap duality

Initialization of globals and pools is done through execution of Smalltalk code within the virtual image, and for that
we use a VirtualSmalltalkRuntime.

However, compiling methods during the bootstrap is more complex than compiling for the current image. The compiler
runs on top of the current image, and generates SCompiledMethods with literals, which can be integers, symbols,
arrays, SCompiledBlocks, etc. Those methods and their referenced objects need to be converted to ObjectMaps, and
end in the bootstrapped world. On the other hand, when the compiler builds methods from source, it may need to
access things living in the bootstrapped image. For example, if the compiler finds the sting Array, it should generate
a method with a literal frame that contains the association #Array -> Array, that belongs to the bootstrapped world.

There is a constant sense of duality while compiling and executing virtually: objects need to be passed back and
forth from the local image to the bootstrapped image and vice-versa many times. To deal with this, the method
compiler is passed VirtualClasses, which account for both the Ring specs and the ObjectMap that represents the
class in the bootstrapped system. To allow usage of globals and pools or class vars, the compiler the compiler uses
VirtualDictionaries, which know both their keys as symbols in the local image and also the associations and values
that live in the botstrapped image.

3. Bootstrap initialization

After compilation, generated SCompiledMethods have references to both objects in the current image and objects in
the bootstrapped image.

And there’s yet one last twist: pool dictionaries. Pool dictionaries are more dynamic than class variables. While class
variables are all determined beforehand (in class definition), pool variables are defined after some initialization: class
variables that point to objects of type PoolDictionary are recognized by the compiler, and are used as local pools
by it. Before it is possible to compile arbitrary methods, the builder has to initialize pool dictionaries. To do so, it
virtualy sends the message #bootstrap to the module object corresponding to the module spec being built. The
virtual runtime interprets the message send, creating more ObjectMaps. During that process the compiler doesn’t yet
recognize pool variables, so pool vars can’t be used to initialize pool vars (it shouldn’t be a big limitation though). One
extra step is done by the bootstrapper: it sends declareGlobals to the module, so that any global object name is
put into the module namespace.

After this initial pass, arbitrary methods can be compiled, so the bootstrap process creates the method dictionaries of
the classes and fills them. Finally, a last initialization pass is done by sending initialize to the module, which
can execute more complex initialization code.

3. Module nativization

This step shall be optional (only required by the DMR for a reduced set of modules). The compiler in the local image
generated instances of SCompiledMethod which contain s-expressions. An SExpressionNativizer traverses them
and generates native code for each method and block. The result of this is stored in their nativeCode ivar and then
transferred into the image segment being built. Kernel nativization for the DMR also requires some extra steps, such
as the nativization of invoke, lookup, and write barrier procedures.

12 Chapter 5. Indices and tables
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4. Image segment wrap-up

During all the bootstrap process all important objects are created by the builder. To finally generate an image segment,
the builder creates an ImageSegmentWriter and passes it the roots, an ordered list of objects from where it will
calculate what are the objects to be included in the file. This step writes the objects put into a binary stream with a
particular format that can be loaded by a launcher written in C++. The launcher is in /launcher directory. The writer
is specified a base address at which the file should be loaded in memory, and knows how to encode each object oop
according to that address.

5.2 DMR runtime

The Dynamic Metacircular Runtime flavor of powerlang is an implementation of a runtime that is completely self
hosted. There is no other “VM”, the generated image contains everything needed to execute its code.

The SExpressions (Source Expressions) are AOT nativized, so that all needed code can be executed and, when required,
a JIT compiler can be loaded into that image so that new code can be nativized on-the-fly.

Memory and garbage collector are written in the same language as the rest of the system and incorporated into the
bootstrapped image when building the system from the spec.

5.2.1 ABI of the DMR runtime

The native code of the DMR follows a series of rules that form an invariant which must be maintained while executing
managed code. An optimizing compiler might alter those rules during moments considered atomic, but in general the
rules apply all the time.

The general design favors design simplicity as the most valued property. Then comes performance, which should be
take into account too.

Execution context

The DMR is designed as a register machine with a stack. There is a set of abstract registers, which are mapped to
concrete ones depending on the target processor ISA:

Table 1: Registers!
Abstract name Concrete name

(amd64)
Type Description

IP RIP callee-saved Instruction Pointer
SP RSP callee-saved Stack Pointer”
FP RBP callee-saved Stack Frame Pointer
R RAX volatile Receiver and Return value pointer
M RBX callee-saved Method/Block native context
S RSI callee-saved Self
E RDI callee-saved Environment
A RDX volatile Argument
T RCX volatile Temporal
V R11 volatile Volatile
nil R12 fixed nil
true R13 fixed true
false R14 fixed false
G R15 fixed commonly used global objects

5.2. DMR runtime 13
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IP (Instruction Pointer), SP (Stack Pointer), and FP (Frame Pointer) are self describing. R register contains the Re-
ceiver at the instant at which a message is going to be sent, and contains the Return value at the moment when a method
is about to exit. When entering a method, R register (which is volatile) is stored into S (Self), which is callee-saved.
This allows to have a pointer to self permanently in a register while executing a method. Previous S is restored by
the callee at exit, loading it from the stack frame of the caller. M (currenty executing Method) provides access to a
method or block’s native code and literals. NativeCode objects (the ones pointed by M) know the CompiledMethod
or CompiledBlock that generated them, and the literals used within native code. They also point to the byte array that
holds the machine instructions to be used by the processor. M is restored when returning in the same way than S. A, T
and V register names are just denotational. This means they were named like that because of their main uses, but they
can be used for different things. They are usually free, ready for usage. We describe the way they work first and give
some examples later. A (Arg0) is used whenever a register is needed for fast/inline arguments, like with inlined binary
integer operations. It is not used for passing real arguments in message sends. T (Temp0) is used to store temporary
values during operations that require a free register. V (Val0) is used to load constants. It is needed because typical
ISAs do not let use full 64-bit constants in instructions, so to use a big constant (like a pointer) you must first load it
into some register. Nil, true and false registers are loaded when entering from C code, and leave like that forever (as
in C they are callee-saved, it is not necessary to restore them when calling C code).

Arguments, temporaries and environment

Arguments are pushed into the stack from left to right. They are not passed in registers because that would complicate
the general design and also debugging. Temporaries are stored in the stack for the same reasons. Leftmost temporary is
pushed first, which usually means it is stored at the higher addresses (amd64). When a method has temporaries shared
with child blocks, or non-local returns, it creates an environment and pushes it (and the previous one) into the stack
before temporaries. The environment is an object of class array, that will have as many slots as shared temporaries.

Block closures also create an environment, again of a size that is equal to the amount of temporaries they share with
their child blocks.

Native code examples

Todo: add a couple of examples of usage of registers in native code

Todo: add an example picture of the stack

• genindex

• modindex

• search
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Things to do (PRs are welcome!)

Todo: add a couple of examples of usage of registers in native code

original entry

Todo: add an example picture of the stack

original entry
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